On the Convergence of Polynomial Approximation of Rational Functions

نویسندگان

  • Guo-Jin Wang
  • Thomas W. Sederberg
  • Falai Chen
چکیده

This paper investigates the convergence condition for the polynomial approximation of rational functions and rational curves. The main result, based on a hybrid expression of rational functions (or curves), is that two-point Hermite interpolation converges if all eigenvalue moduli of a certain r_r matrix are less than 2, where r is the degree of the rational function (or curve), and where the elements of the matrix are expressions involving only the denominator polynomial coefficients (weights) of the rational function (or curve). As a corollary for the special case of r=1, a necessary and sufficient condition for convergence is also obtained which only involves the roots of the denominator of the rational function and which is shown to be superior to the condition obtained by the traditional remainder theory for polynomial interpolation. For the low degree cases (r=1, 2, and 3), concrete conditions are derived. Application to rational Bernstein Be zier curves is discussed. 1997 Academic Press

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A method to obtain the best uniform polynomial approximation for the family of rational function

In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...

متن کامل

The best uniform polynomial approximation of two classes of rational functions

In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.

متن کامل

A Numerical Approach for Fractional Optimal Control Problems by Using Ritz Approximation

In this article, Ritz approximation have been employed to obtain the numerical solutions of a class of the fractional optimal control problems based on the Caputo fractional derivative. Using polynomial basis functions, we obtain a system of nonlinear algebraic equations. This nonlinear system of equation is solved and the coefficients of basis polynomial are derived. The convergence of the num...

متن کامل

On a convergence of the Fourier-Pade interpolation

We investigate convergence of the rational-trigonometric-polynomial interpolation that performs convergence acceleration of the classical trigonometric interpolation by sequential application of polynomial and rational correction functions. Unknown parameters of the rational corrections are determined along the ideas of the Fourier-Pade approximations. The resultant interpolation we call as Fou...

متن کامل

On the maximal ideal space of extended polynomial and rational uniform algebras

Let K and X be compact plane sets such that K X. Let P(K)be the uniform closure of polynomials on K. Let R(K) be the closure of rationalfunctions K with poles o K. Dene P(X;K) and R(X;K) to be the uniformalgebras of functions in C(X) whose restriction to K belongs to P(K) and R(K),respectively. Let CZ(X;K) be the Banach algebra of functions f in C(X) suchthat fjK = 0. In this paper, we show th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993